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Introduction 

Let M be a Poisson manifold. Treating the exterior algebra /i*(M) of differ- 
ential forms on M as a natural graded (or “super”) extension of the algebra 
C-(M), one could ask for the corresponding extension of the Poisson bracket 
defined on C”(M) to the whole algebra n*(M). Besides this rather general rea- 
son there exist a number of more concrete ones which lead to the same question. 
For instance, one of them comes from the singularity theory for solutions of par- 
tial differential equations. Namely, it is well known that the standard hamilto- 
nian formalism describes the propagation of the so-called “wave fronts” (see refs. 
[ 1,2] ) as well as as the propagation of the simplest geometric singularities of 
solutions of partial differential equations (see refs. [ 3-51). So, it is natural to 
expect that the propagation of higher-order geometric singularities which were 
found in ref. [ 61 can also be described in terms of a suitably extended hamilto- 
nian formalism. 

In fact, a natural extension of the Poisson bracket to the algebra /i*(M), prop- 
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erly, is hardly possible and we answer the above question by extending this bracket 
to the space B (M) =A* (M) /M *(M) of all co-exact forms on M. For symplectic 
manifolds our extension coincides with that of Michor proposed in ref. [ 71 and, 
therefore, can be considered as the generalization of Michor’s result to arbitrary 
Poisson manifolds. Our approach, however, is quite different and is based on the 
unified Schouten-Nijenhuis and FrGlicher-Nijenhuis brackets [ 111. This gives 
some advantages, say, in reproducing on 9 (M) all basic elements of the hamil- 
tonian formalism and also enables us to relate naturally the extended bracket 
with some other ones. In particular, for a given Poisson structure 8 on M, we 
imbed B(M) into the following commutative diagram of graded Lie algebras 
and their homomorphisms: 

The corresponding brackets are indicated at the comers. Here ka,(M) is the ex- 
terior algebra of multi-vector fields on M supplied with the Schouten-Nijenhuis 
bracket [I: *, * 1 and the hamiltonian differential de. The bracket [ I, s ]I @, which we 
treat according to Krasil’shchik [ 81 as the “dual” Schouten-Nijenhuis bracket, 
was introduced by Karasev [ 9 ] and independently by Kosmann-Schwarzbach 
and Magri [ lo]. The “dual” Poisson bracket {m, .}@ (see section 5) on co-exact 
(with respect to 8) multi-vector fields seems to be introduced here for the first 
time. 

All basic constructions of this paper are, in fact, of a rather general nature and 
can be applied more or less automatically to. a number of situations of interest. 
For instance, it is straightforward to extend the Poisson bracket to the space JV”( M) 
of co-exact super-differential operators acting on /i*(M) (see the preliminary 
section). However, we do not touch here upon these possibilities nor on cohom- 
ological aspects of the developed formalism, hoping to discuss it in a separate 
work. 

Notation 

Throughout this paper M denotes a smooth n-dimensional manifold. We adopt 
the notations i&(M)=Ci 9i(M) andn*(M)=&n’(M) for the exterior alge- 
bras of multi-vector fields and of differential forms on M. We also set 

B(M) = C B,(M), B,(M) =dAi-‘(M) (exact forms) , 
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P(M)= c %mf), ~(M)=A’(M)/Bi(M) (“co-exact” forms) . 

Evidently, S’(M)=/I(M)/B(M) and 9a(M)=Cm(M). We put 9(M)=9,(M). 
All tensor products in this paper are taken over C”(M) , 
The /i*(M) module N(M) = Ci /i i(M) @ 9 (M) of all vector-valued differen- 

tial forms on M is supposed to be endowed with the Frolicher-Nijenhuis bracket 
operation, with respect to which it is a graded Lie algebra. 

The Lie derivative of a differential form well*(M) along a vector field 
XE 9 (M) is denoted by L,(o), or, briefly, X( w ) . 

We use both XJo and ixw for the insertion of X into o. 
If {K=Cj Kj, 6), d z Kj+K’+‘, is a cochain complex, then Hgr K= Ci Hgr’K de- 

notes the group of all graded maps of K into itself. 
In this paper we work with graded objects of various types. In order to simplify 

the notations related to the corresponding signs we adopt the following rule: the 
symbol of a graded object used as the exponent of (- 1) denotes the degree of 
that object, mod 2. For instance, the expression for the graded commutator [F, G] 
of two graded maps F, GE Hgr K reads 

[F,G]=F.G-(-l)FGGoF. 

The overlined symbol of a graded object used as the exponent of (- 1) denotes 
the degree of that object + 1, mod 2. For instance, 

(-I)~‘-(-l)F”~-(-l)F. 

0. Preliminaries 

In this section we recall some notions and results which will be needed. For 
further details see ref. [ 111. 

Let {K, d> be a cochain complex and FoHgr K. The map 

L,=Fod- (- l)FdoF= [F, d] 

is called the Zievization of F. Evidently, L+Hgr K and deg Lf= deg F+ 1. 
The lievization can be considered as a map, 

L: HgrK+HgrK. 

It is easy to see that 

L LF=O, i.e. L*=O, FeHgrK. 

In other words, { Hgr K, L} is a cochain complex. 
For F, GeHgr K, we have the following elementary equalities: 
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(a) LG =FoLG+ (- l)GL,.G, 

(b) L~F,G~=~F,LcI+(-~)~~LF,GI 3 

tc) L[L~,G] = lLF, LGl, L[F.Lc] = (- 1 )G[LF> LGl * (1) 
Let {K, d)={n*(M), 6>. A differential form @e/i’(M) can be interpreted as a 

map ocHgr’K, 
@l-WA@, @E/i*(M). 

Then [ol, w2] =O, o,, c+c/I*(M) and 

L,=(-l)%fO. (2) 

Also, for arbitrary o, @o/i*(M) and X, YE 9 (M) we have 

(a) [ix, iyl =O , 
(b) [ix,o]=XJo and [o,ix]=(-l)tiXJo, 

Cc> [ix, &I = [Lx, iyl =ilx,rI , 

Cd) [Lx, 01 =X(o) and [o, L,yl = -X(o) , 
(e) [ix,L,]=(-l)tiX~do and [L,,i,]=-XJdo, 

(f) [Lx, &I =&KY] 9 
(g) [L,,L,]=(-l)@dX(o) and [L,,L,]=(-l)“dX(w). (3) 

We define the L-commutator of F, GE Hgr K as 

[F, Gj=f[L,, G]+$(-l)‘[F, LG] . 

We will also use the following alternative form of the L-commutator: 

[F, G% = IL,, Cl +L 3 
whered=$(-l)‘[F,G]. 

The L-commutator has the following properties: 

(i) [F,Gj=-(-l)r’[G,Fj, 

(ii) LtF.Gl= [L,, LG] and, in particular, [F, LGj = iLlF,Gl, 

(iii) (-l)~~[~,~G,H~~+(-l)GR~H,~F,GI]~+(-l)W~G,~H,F~~ 

= fL!=lor(FG”, . . 3 
where 

Flor(F,G,H)=(-l)FN+GIF, [G,Hj] 
+(-l)“‘+“[H, [F,Gj]+(-l)GF+RIG, [H,Fj], 
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The following formulae are a direct consequence of these properties and of 
(l)--(3): 

(a) [[F~G,H~=F~~G,N~+(-l)G”~F,N~oG 

+~{(-l)GLF~[G,H]+(-l)CHIF,H]&.}, 
(b) ~F,G~W~=~F,G~~H+(-l)FGG~([F,H~ 

++((-l)G+“+’ [~,Gl~L,,+(-l)~~~,.[F,Hl}, 
[ (a) and (b) are valid for an arbitrary cochain complex {K, d> 1, 

(c) [w LYn= - ;d(XJo) -XJdo, 

Cd) ~~,~sn=-b~xc~~,, 
(e) b4=0, 
(0 Uk &I =ifx.yl , 
(8) ~0, en = IL,, @I- f~,,.,, , 

u8,wn=[s,dOi+t(-1)“LI,,1, sdw4), 

(h) ue,Ldn=t(-l)PTL~dg.dl. 
A graded operator 

P: A*(M)+A*(M) 

is said to be a super-differential of order 5 k if 

(4) 

[%, [w, “‘[Ok, F]*-]] =o ) 
for every oo, ol, . . . . o~E/~*(M). 

We denote by SBiffM the graded algebra of all super-differential operators 
acting on /i * (M) . 

A differential form &a/i*(M) regarded as an operator, 

w : A*(M)-+A*(M); o!l+OA a, ad*(M) ) 

is a zeroth-order super-differential operator. 
Also a multi-vector field I/can be understood as an operator acting on /i*(M). 

Namely, if V=X, A ..a A &.E Z?&(M), then 

.wjde) = f’Je=%l C-J C&J& ), E/~*(M) . 
It follows from (3b) that I/ is a super-differential operator of order k- 1. The 

same conclusion holds for an element 

OJ@VE/ii(M)@9j(M), 
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which is understood as the operator 

063 v: A’(M)+A’(M); QHOA iv(Q), @GA*(M) . 

In such way we get the imbedding 

A*(M)@9*(M)~SWfM. 

The “sub-imbeddings” 9, (M) 4 Wiff M and A * (M) @ 9 (M) 4 Sgiff A4 of 
the previous one will be used below in the unification theorem. 

Proposition. The minimal subalgebra of Hgr A* (M) which is closed with respect 
to L and contains all insertion operators ix, XE 9*(M), and all multiplication op- 
erators o, ox/i+(M), coincides with the algebra ofall super-differential operators 
S%ffM. q 

The algebra S9iff M is closed with respect to L and, therefore, with respect to 
the L-commutator operation. It follows from property (ii) of the L-commutator 
that [SBffM, L(S%ffM)] c L(S23iffM). Hence, the L-commutator induces 
a bracket operation on the quotient 

~V(M)=!%iffM/L(S9iffM). 

The following assertion is a direct consequence of properties (i)-(iii) of the 
L-commutator. 

Proposition. The quotient N(M) equipped with the bracket operation inducedfrom 
the L-commutator is a graded Lie algebra. n 

Unification theorem. The compositions 

Q*(M) *SQiff M+.Af(M) , 

A*(M)@9(M)+S%ffM+J1T(M), 

are imbeddings of the graded Lie algebras, supposing that 9*(M) is equipped with 
the Schouten-Nijenhuis bracket and A*(M) @ 9 (M) with the Friilicher-Nijen- 
huis bracket. 

1. Extended Poisson brackets 

Let M be a Poisson manifold and {e, *} denote the corresponding Poisson 
bracket. This bracket is defined on the algebra P(M), which is the zero-graded 
part of the graded space of all co-exact forms B (M): Cm(M) = PO(M) (see the 
section on notation). In this section we extend this bracket from PO(M) to the 
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whole space B (M). This extension equips 9 (M) with the structure of a graded 
Lie algebra (or super-Lie algebra). We carry out the extension procedure in two 
steps. First, we define the pre-Poisson bracket ( ., *) on the differential form al- 
gebra /i*(M). This bracket does not satisfy the Jacobi identity and is not skew 
symmetric. However, by making the quotient A*(M) with respect to the exact 
forms B(M), we will obtain the desired bracket on the quotient space 
9 (M) =A*(M)/B(M). 

Let 63~ g2 (M) be the bi-vector field on M which gives the considered Poisson 
structure on M, i.e., 

Recall that 8 defines a Poisson structure on Miff [ 8, @I = 0 (the L-commutator 
restricted on 9* (M) coincides with the Schouten-Nijenhuis bracket ). 

Definition 1. Let 8 be a Poisson structure and o, @GA*(M). The bracket 

(w, Q) : A*(M) xA*(M)+A*(M) 

defined by 

(we)=b, II:@,QlHl 
is called the pre-Poisson bracket on n*(M) . q 

Evidently this bracket is R-bilinear. 

Lemma 2. We have 

ProoJ: It follows directly from property (iii) of the L-commutator, and from the 
fact that [ @,@I= 0. cl 

Now we need the following assertion proved in ref. [ I 11. 

Lemma3. B(M)=A*(M)fW(S9iffM). 0 

An immediate consequence of this lemma is that the map 9 (M) -N(M), in- 
duced by the imbedding n*(M) 49iff M, is also an imbedding. Below we will 
consider 9 (M) as a subspace of X( M). 

The main properties of the pre-Poisson bracket are given in the next proposition. 

Proposition 4. If o, Q, qxA*(M), then 
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+ t - 1 I”(% (QA e> > =dQ(w e, (4) , 

where Q( o, Q, q10) E A*(M) is a multi-super-differential operator. 

Proof: 
( 1) By means of the alternative form of the L-commutator [Q, Sj and of (2 ) 

and (4h) we have 

<w e> = t - 1 N@, [[a @.-I 4 = - Uw, [de, @I II ++t - 1 )“+“J&,wl , 
where A= - f [Q, 81. Finally we get the desired result by applying the alternative 
form of the L-commutator [CO, [de, 8]]1. 

( 2 ) It follows from property (iii ) of the L-commutator and of [ w, Q 4 = Cl that 

( - 1 mum us, en n + t - 1 m, UW, sn I= ~~~~~~~~~~~~~ . 

To conclude observe that 

ue, bow n=wm, vwn=t-w~~~~. 
(3) By definition 

04 mo)=h~ us, UQ, I[S,V'D 4 nn. 
Then, by applying property (iii ) of the L-commutator to [ 8, [Q, [ 8, pn 1 1 we 
iset 

(0,(~,~0)~=-(-1)~~8~,,u~,,n,,.,,nnn 
-(-l>p+"%0,~e,~%s,(pn,snnn+f(-1)vn:~,~~,~~(~~.~~.~~,n. (5) 

It is now the direct consequence of lemma 2 and (4h) that the two last terms of 
this expression can be rewritten in the form LA, for SOme AeS&ffkf. 

By using once more property (iii) of the L-commutator we have 

[[O,n:r[s,(Pn,~~,ennn=-(-l)"("+")%Ils,en,[O,o:s,~nnn _ ( _ 1 )m?+v) [[n:s,can,[II[[18,en,0nn+:(-1)""LF,orcw.ne,(PD.ile.sII,. 
But 

n:cs,en,rrw,~[s,(~nnn=~n:s,en,(o,~)n 
= - ( - 1 )Q((JfV) b4~hw~~nn 
= - ( - 1 )Qcfi+v) ( (0, (p), @) ) 
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and, similarly, 

uu~~~n~uu~,en~~nn=(-l)~JB+“+Q~~~~,Q~,~D) * 
It now follows from assertion (2) of this proposition and from (4h) that 

( (w (P>T e> = (- 1 )“Q+Qp+wYe, ($5 0) > +L3 , 

< (~7 e>, 9) = - (-- 1 Y@-<(p, (0, e> > +L+ , 

for some V,, Yz71ES9iffM. 
Finally, by making use of the above formulae, we can rewrite (5 ) as 

((o,e>,co>=-(-l)“‘““‘(@, ((p,@)) 
-w)~cw+p’((p, (we>>+L 

for some A~S9iff M. The result follows now from lemma 3. Cl 

In order to quotient correctly the pre-Poisson bracket up to a bracket on 9 (M) 
we must show that ( o, de) and (do, Q) are exact forms for every o, QEA * (M) . 
Because of lemma 3 it is sufficient to show that both of them belong to the image 
OfL. 

For (0, de) this can be done as follows. From (4g) we see that 

~@Jen=fc-uQ&,,, * 
Then, by applying (4h), we get 

<wde)=Uw Us,de]l]I=t(-1)gUW,L~B,dglI]=t(-1)W+QL~dw.(B,dgll. 
The exactness of the form (do, Q) is proved similarly. 

Below [ I,u], V/E/I*(M), denotes the equivalence class of ly modulo B(M). 
The correctness of the following definition follows from the above assertions. 

Definition 5. The bracket { [ 01, [e] } E 9 (M) defined by 

{WI, [el)=We> (modW0) 
is called the generalized Poisson bracket. 

In the following we will write {o, e} instead of { [CO], [e]}. 
Now it follows directly from assertions (2 ) and ( 3 ) of proposition 4 and from 

lemma 3 that the so-defined bracket {., a) on 9 (M) is graded skew-symmetric 
and satisfies the graded Jacobi identity. 

This proves our main result: 

Theorem 6. The space 9 (M), with the bracket {. , a}, is a graded Lie algebra. D 

Remark. Let .% S9iff M, deg Z be even and [.7,.5j E Im L. Then the bracket 
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defines, by passing to the quotient, a bracket, say { *, w}~, on N(M) which turns 
N(M) into a graded Lie algebra. This can be proved by the same arguments as 
above. In particular, every Poisson structure 63~ 9$(M) on M determines the 
graded Lie algebra structure on N(M) by means of the bracket { ., *}e. The re- 
striction of { ., s}~ to 9’ (M) c N(M), evidently, coincides with the above intro- 
duced Poisson bracket { ., *}. In other words, B (M) equipped with the bracket 
{ 0, a} is a graded Lie subalgebra of N(M) equipped with the bracket {a, e}@. 

Below we collect some formulae which are necessary for section 2. 
Let AEN @A*(M). Then the corresponding decomposition of A into a di- 

rect sum of two terms looks as 

A=AoGM( 1) , 
where A( l)EA*(M) and&= (A-A( ~))EN(M). 

We remark that for p~/l~(M), 

[e, p] = [Ak-‘(M)~‘(M)]~/ik-2(M) . 

(6) 

It is easy to see that 

and, therefore, the decomposition (6 ), for A= [ t3, q] , looks as 

w%Y,l=vwo+~J~. 
Moreover, we remark that, since [ A( 1 ), ~1 ~0, 

[A, PI = [A,, ~1 =AoJv. (7) 

If VeN(M) and &x/i*(M), then 

L(e) = [ v, 4 (e) = ~J&-- ( - 1 I”4 VJe) . 
The following formula stems from the above one for V= [ 63, do] 0, taking into 

account that, by virtue of (2) and (7 ), 

~~,~~l,J~e=~~~,~~l,~el=~-~~“LT+‘[~p, [&doll. 
Therefore, 

[L,, [e,dw]]=(-l)“p+‘L [e.c,u],(e) + (- 1 P’4 [es dwloJe> . (8) 

We also have 

L4PA&?)=L4P) Jw+c-ww&(e) - (9) 

Lemma 7. For every o, QEA*( M) we have 
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(49 0) = (- 1 Y~+‘Jqe,d,],(e) 

+~~f(-l)“P~~,~~IoJe+~(-l)O~[e,OJOJd@}. 

ProoJ By applying (4g) to [e, 01 and then the alternative form of the L-com- 
mutator and (4h) we get 

(eJN=lIa [e,dolD+1(-l)“l[e,LI~,~1]I 
= LL [~,~~ll+t(-1)“~,,~8,dw,] +tw)W+Q?,[e.w]] . 

We now obtain the necessary result by applying (8) to the first term of this 
expression and (7 ) and (2) to the second and the third ones. 0 

Corollary 8. 

where 
<w e> = (- 1 )w&3.dw],(e) +d&k?) 3 

B ,=-t[e,dwl,Je-b(-l)“[e,oloJdg 
-f(-lYVlor(o,@,e). 

Proof: We obtain the result by rewriting (0, e) according to proposition 4 (2) 
and then applying lemma 7 to (Q, u) . 

2. Generaked hamiltonian fields 

In this section we define the generalized hamiltonian and canonical fields and 
establish for them the analogues of the standard general formulae. 

Throughout this section the symbol “x ” denotes equality mod B(M) or 
modL(S%ffM). 

First of all, we will introduce the notion of a hamiltonian field into our scheme. 
Our leading principle in doing this is to preserve for generalized hamiltonian fields 
corresponding to differential forms the well-known classical formula 

i.m=&-tg) 9 (10) 

where J ge Cm (M) and X, is the hamiltonian field corresponding to the hamil- 
tonian functionf: We will reach this goal by adopting the following 

Definition 9. The hamiltonian field X&V(M) corresponding to SEA* is 
defined as 
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Evidently, Xo=Xc,)+dB and, therefore, the field X, depends only on the equiv- 
alence class [ 01 E B (M) of o. For this reason, it is correct to set, for A= [ 01, 
x*=x,. 

The element AE B (M) is called the hamiltonian of the hamiltonian field &. By 
abuse of language, we will also call the form w a hamiltonian for X,. Later we will 
see that the above definition coincides with the classical one when&C”(M) . 

Inserting the previous definition into corollary 8, we get 

<we> =Lx,(e) . (11) 

It is natural to define the Lie derivative Lx(l) of AE S? (44) along a ‘Yield” 
XEN( M) by setting 

Lx(A) = [x(e) I, A= [@I * 
The correctness of this definition is evident. Now we can rewrite ( 11) in the form 

04 ~l=L,(~) =LxJ4 3 
wherep= [o],A= [Q], whichgeneralizes (10). 

The form ( 11) of the pre-Poisson bracket allows us to prove the analogue of 
the classical formula dr; gh} = df; g}h +gV; h}: 

<wu,Ae>=:(w(o> Ae+(-lY’(DA <we> ’ 
In fact, it follows from (9), that 

(o,~A@>wL,(y,A@)=L,(~)A@+(-l)““a,ALx;(@). 
The set 

Ham @=(X,EN(M) 1 men*(M)} 

of all hamiltonian fields (with respect to 8) is, evidently, a linear subspace of 
N(M). Moreover, it is a graded Lie subalgebra of N(M). To prove this we need 
the formula 

X, = [To, S] + ( - 1 )%]dw- +L,,,, , (12) 

expressing hamiltonian fields in terms of the bracket [ *, .I. It follows immedi- 
ately from the definition of X,, from (2) and from the alternative form of the L- 
commutator. 

Corollary 10. 
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We also remark that [II Y, WI is a differential form, when YEN(M) and 
OE/~* (M). This can be seen from the formula 

%Y,wn=YJd~-t(-l)Yd(YJo)) (13) 
which follows straightforwardly from the definition of the bracket [ ., . J. 

We are now ready to prove the following analogue of the classical formula 
[J& &I =JhI (here [ I, * ] stands for the Lie bracket). 

Proposition 11. 

Proof: According to corollary 10, we have X, z [o, Sj +p, X, z [Q, S]l + w, 
Q, V/E/I*(M). Therefore, 

uxw,x,nM~[[O,~n+~,~e,sn+wn 
=[I.Il.o,sn,ue,snn+[II~w,sn,v/n+[C~,~e,snn. 

We note that U I@, @I, @II and UP, Ue, @I II are differential forms. But, from 
property (iii) of the L-commutator, we have 

~[[o,sn,[[~,snn+(-i>"+8~s,n:[o,sn,enn 
+(-l)""~e,%s,~w,snnn~o. 

The third term of the above expression is ~0 (in virtue of lemma 2) and, 
therefore, 

[~~,sn,~~,snn=(-i)"+"~s,11.[[~,8n,enn 
=w-4~wb-q~,~~+c, 

where [e/i*(M). 0 

Corollary 12. Ham 8 is a Lie subalgebra ofN( M). 0 

Definition 13. A field XEN(M) is said to be a canonicalfield with respect to a 
Poisson structure 8, if 

~x,sj=o. q 

It easy to see that this notion coincides with the classical one if XE 9(M). The 
set 

Can @= {X&V(M) ] [X, Sg EN(M) +im L} 

of all canonical fields with respect to 8 is, evidently, a linear subspace of N(M). 
As in the classical situation, we have 
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Proposition 14. The set Can 8 is a Lie subalgebra of N( M). 

Proof: It follows from property (iii) of the L-commutator that [ [X, Yj, @I 
EN(M)+imLif[X,@‘J, [Y,e]l~N(M)+irnL. 0 

Finally, we have 

Proposition 15. 
(1) Ham8cCan8, 
(2 ) Ham 8 is an ideal of the graded Lie algebra Can 8. 

ProoJ 
( 1) For &z Ham 8, we have in virtue of ( 12 ) 

by, en = [I: b, en +wA, en 
=E[~,en,en+II:~,en--~~,en, 

whereq=(-l)%Jdw,andd=-t[@,o].Wenotethat 

m4,en4 [(p, en x Y+~/EN(M)CM*(M), [L,, en ~0. 

Hence, 

[Xw, en=Y+y/+Lv, forsome VES%ffM, 

and, therefore, [&,,,~~(l)=y/+dP(l). On the other hand, [X,,@J(l)=O. 
Therefore, V/E Im d and [X,, 01 x Y. 

(2 ) With the same notations as above, we have for X,EHam 8 and YECan 8 

II:y,x,n=[[y,[[w,en+~--L,n 
=[y,I[~,enn+[y,b~n-~y,~~n 
=-(-i)~(~+y)~e,~~,0nn-(-i)~(~+~)(1:~,~e,ynn 

+enorcKw.e, +I[Y, d-1 y, L,II 
(because of property (iii) of the L-commutator). We note that 

-(-l)W+w) b w, ~nn+rr~~n--,w*mf), [y,L,n=o. 
Moreover, because of ( 13 ) we have 

-(-i)B(~+y)~e,~[[:,Onn=~[I:y,~n,en 
=[(YJdo)-f(-1)Yd(YJo),8]~::[YJdo,8-j. 

Then, 

pxJD=I[:yJdw~n+~v 



A. Cabros and A.M. Vinogradov /Extensions o/the Poisson bracket 89 

or, by making use of ( 12)) 

ly, XUJ~ =&‘Jdw) +g, for some geA*(M) . (14) 
But, on the other hand, 

%KLll=Z+~v, (15) 
where ZoN( M), as follows from the unification theorem. Therefore, comparing 
( 14) and ( 15 ), we can conclude that 

~y~xw~~x~YJdw) * 0 

Corollary 16. The quotient Can B/Ham 8 is a graded Lie algebra. 0 

Proposition 17. 

ProoJ: The first equality has already been proved before and the second one fol- 
lows from 

Y(w) = YJdo+d( YJo) . 0 

Finally, applying the unification theorem, we have 

Corollary 18. The Friilicher-Mjenhuis bracket of Y and X, is the hamiltonianjeld 
x( YJdw)- 0 

Concluding this section we show that, if M is a symplectic manifold, then our 
generalized Poisson bracket coincides with the bracket defined by Michor [ 71. 
In fact, if 8= Ci a/axi A a/api, where (xi, pi) are canonical coordinates, and CO= 
Sod! A -.. A dfk, then 

where 

(16) 

is the standard hamiltonian field corresponding to f~ Cm (M) . It remains to ob- 
serve that ( 16 ) coincides with the formula of Michor for generalized hamiltonian 
fields. 
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3. The “differential” of the Poisson bracket 

A Poisson structure on a manifold M provides in a natural way the algebra 
/i*(M) with a graded Lie algebra structure, as was found for the first time by 
Karasev [ 91 and by Kosmann-Schwarzbach and Magri [ 101. The corresponding 
bracket, say ] ., * [, if supposed to be a graded derivation with respect to each of 
its arguments, is defined uniquely by the “initial data” conditions 

lLd=O, l.L&[=df;g~, Mf;&[=&L& J;g~Cm(w 7 (17) 

where { ., .} is the given Poisson bracket. 
We see from ( 17) that the bracket ] *, * [ is the “differential” of the Poisson 

bracket {s, s}, at least concerning functions on M. Below we extend this result to 
all co-exact forms by showing that the map 

P(M)=A*(M)/B(M)+A*(M), s(M)3[w]t+doEA*(M) ) 

is a homomorphism of the graded Lie algebras, where B (M) is supplied with the 
generalized Poisson bracket of section 1 and /i*(M) with the bracket ] ., * [. 

It was observed by Krasil’shchik [ 81 that the “unification” techniques (see ref. 
[ 111 or section 0) allows one to define the bracket ] a, * [ as the “Schouten-Nijen- 
huis bracket” with respect to the hamiltonian complex associated with the con- 
sidered Poisson structure. We start by recalling Krasil’shchik’s definition. 

First, we note that a given Poisson structure 6% g2(M) on M provides the 
graded commutative algebra Q*(M) = Xi ?2i( M) of multi-vector fields on M with 
the differential 

de: 9i(M)+9;+~(M), i=O, 1, . . . , 

where de(E)=[$,Zl and [a, * 4 stands for the standard Schouten-Nijenhuis 
bracket [recall that, in view of the unification theorem, this coincides with the L- 
commutator restricted to ka, (M) 1. Taking {K, d> = {g*(M) , d,} to be the basic 
complex for the “unification” construction (see section 0) one can supply the 
space Hgr g*(M) with the L-commutator operation, which will be denoted by 
[ *, . I] @. So we have, by definition, 

where F, GEHgr C&(M) and L$ = [de, F] ’ is the lievization of F with respect to 
de. Here we use [ ., * 1’ for the graded commutator in Hgr s*(M) to distinguish 
it from the graded commutator [ a, * ] in Hgr n * (44). 

Second, we observe that differential forms on M can be interpreted naturally 
as elements of Hgr a,(M). Namely, a given WE/~*(M) defines the graded map 
F/Ho] V, VE g,(M), of g*(M) into itself where “J” denotes the insertion opera- 
tion of differential forms into multi-vector fields. This interpretation gives us the 
possibility to apply the L-commutator operation [ *, * ne to differential forms. In 
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such a way we get the desired extension. The necessary details are given below. 
Our next step is to deduce some explicit formulae for the operators LE, 

OEA *(M). To do this we need the following identities, which result directly from 
(4a) and (4b): 

C[~,Gl,~II=[~,[[G,HIIl+(-l>GH[[I~,HII,Gl 
+tC-l>GL [G,Hll+f(-l)GH[[~,Hl,L~l, 

UC [G,HID=[C~,GIl,Hl+(-l)EGIG, BKH]l 
+$(-l)G+“+’ [[F,Gl,L,l+4(-1)F~[L~, [J’yfUl. (18) 

The first result we need is 

Proposition 19. We havefirf~ Cm( M) 
( 1) L.7 = -<,, where the vector field X,is regarded as the multiplication opera- 

tor VH+A Von G&(M); 
(2) Lzg=Lx,. 

ProoJ 
( 1) Let VE .‘S* (M). Then applying the definition of lievization and formula 

(4b) we get 

L.~=wd(v)=f[I:8, vn-n:wvn 

=fus, vn-w,snA v-m, vn 
=-p3,f1 A v=-x-~ v. 

( 2 ) By definition 

L~~(V)=[dJ;d,l’(V)=dflI[s, V]+lP,dfJVll. 
Next, we note that o J V = - [CL), V] for OEA ’ (M). Therefore, 

L~(v)=-[df;u8,vni-u8, ka vin. (19) 
Now the second of formulae ( 18) gives us the following expression for the second 
termof (19): 

us, [a vin=[u8,dfn,vi-[df;us, vni 
+f(-1)“[[8,dfl,LI,,l+5[Ld,, [@ VII. 

Observing that [L, [ 8, V] ] = 0 and substituting the last expression into ( 19)) 
we get 

L~w=-~~6h7-n, Vl+I(-~)p[[~,dfl,L~~l * 
But from (4g) and ( 12) one can see that 

(20) 
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[ 8, dfn = - tL,e,c$fl = - b+g = - f L, 9 

~@Jm=n:@,sn=~J. 
This allows us to rewrite (20) as 

L$(V)=)[Lx,, Vl+f(-1Y~Xf,~v1=KX/, Jq=~x,W * 
so 

L&L,. cl 

To go on we need the following result. 

Lemma20. ForanyXc9((M),wwi*(M) theformula 

L,(oJV)=-X(w)JV+oJL#q 

holds. 

(21) 

Proof Formula (2 1) is the infinitesimal version of the naturality property of the 
insertion operation. In fact, if F : MAN is a diffeomorphism, then 

F(oJY)=((F-‘)*(o))JF(V) > 
where F ( IV) denotes the image of WE .&(M) along F. In particular, if Xe 9 (M) 
and A, : M+M is the one-parameter group of diffeomorphisms generated by X, 
then 

4wl v = (A*_,(w) 1 MA VI - (22) 

But 

$wvl,=o=w% $4%,(o) l,=o= -X(o) . 

So, differentiating (22) with respect to I, we obtain (2 1). 0 

It follows directly from (2 1) that 

[L,, o]‘= -X(w) . (23) 

Now we are ready to compute the bracket [ a, * ] e for the simplest arguments. 

Proposition 21. Iff; g&“(M), then 

iIJ Kn*=o~ iv&lle=tig~, Pi! &le=4Jd. 
ProoJ First, by virtue of proposition 19, we have 
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[f;gn~=~[L~,gl’-~[J;L~l’ 
=-1[~,,gl’+f[/;X*l’=O. 

Similarly, but taking into account (23 ) in addition, we get 

~f,~gn~=tt~~,~gl’+ftf,~~~l’=-ft~~,~g]’+~[f,Lx,l’ 
=f~(g)-rX,(f)=ldf;gj-f{g,f}=df;g}, 

and, finally, 

The previous proposition supplies us with the necessary “initial data” to prove 
the following central formula: 

u~n~=(-w~[d~ w4ii+wwb, vwl+, wwdi. (24) 

This is done as follows. 
Denote by 10, Q[ the right hand side of (24). Then we have 

Lemma 22. Iff; ge C” (M), then 

nm=t nJ;~gIc=cf;g~~ nwgu=mb 
Prooj It is evident that jJgg[ =O. Next, from the definition we see that 
11; dg[ = - [u” [ 8, dg] 1. But by virtue of proposition 4 ( 1) the last expression 
coincides with Cr; g>. Similarly, 1 dA dg[[ = - d [ dJ [ 6% dg] ] = dV; g} [proposition 
4(l)]. 0 

Next, we have 

Proposition 23. Both brackets (I. -, * I@ and I*, * I[ are commutative (in the “graded” 
sense) and satis& the following conditions: 

~cc,h8,~n~=wAI[g,~ne+(-i)pk~0,~n~hQ, (25) 

nohQ,;1[=WAnQ,~[r+(-l)~nO,~I[:A~. (26) 

ProoJ The bracket [ a, . ne is commutative by being the L-commutator. Com- 
mutativity of I., * [ results from the Jacobi identity for the graded commutator 
[ a, * ] applied to each of the three terms constituting the right hand side of (24). 

To prove (25) we note that compositions of differential forms regarded as in- 
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sertion operators on 9,,(M) coincide with the exterior multiplication operation. 
Then (25) follows from (4a), the last two terms of which vanish because of the 
graded commutativity of differential forms interpreted as insertion operators. 

Finally, (26 ) is checked easily by direct computation. 0 

Now, we are ready to prove the main result of this section. 

Proposition 24. Formula (24) holds. 

Proofi In other words, it suffices to prove that the brackets I[ *, * ]le and 1 a, * I[ on 
/1*(M) coincide. But proposition 2 1 and lemma 22 show that they actually co- 
incide on functions and their differentials. On the other hand, it follows from 
proposition 23 that each of these brackets for arbitrary differential forms is re- 
duced to the corresponding brackets of functions and their differentials exactly 
in the same way. 0 

We denote by d also the map 9 (M) +A* (M), which is given by 
9(M)s[w]~d0~/1*(M).Thenwehave 

Theorem 25. The map d : 9 (M) +/i*(M) is a homomorphism of graded Lie al- 
gebras, where 9 (M) is supposed to be equipped with the generalized Poisson 
bracket {a, a} andA* with the bracket [e, .]le. 

Proof: It follows from (24) that 

[Ed@, &De= (- 1 Y=d[dw [@, &I 1 . 
Also, we see from proposition 4 ( 1) that 

d{wd=(-Wd[dw [@,&II 
because [u, [ 0, de] ] and [ [ 8, Q], dw ] are differential forms and, therefore, 

&+A~~II = -tdh W, de1 I, ~~[B,~I.~~~ = 24 V% el, do1 - 0 

We conclude this section with the formula 

{~,e~=II:~,deIl~modWW, (27) 

which results directly from proposition 4 ( 1) and (24). This shows that the Pois- 
son bracket on B (M) is determined completely by its “differential”, i.e. by the 
bracket [[e, .je 
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4. The graded extension of the hamiltonian map 

Let 0~ g2 (M) be a Poisson structure on M. The map de : C” (M) + 9 (M) , 

&f= [e,fll =J$, 
is a differentiation of the algebra C”(M) with values in the C”(M)-module 
9(M), i.e., 

4d.k) =-f’&(g) +g&(f) . 
The universality of the differentiation d : C-(M) +A ’ (M) yields the unique 

homomorphism of Cm (M)-modules r, : A l (M) + 9 (M) which makes the fol- 
lowing diagram commutative: 

In particular, I’,( fdg) =fX,. r, is called the hamiltonian map corresponding to 
the Poisson structure 8. Regarding the exterior algebra A*(M) to be the graded 
(or “super” ) extension of the algebra C” (M) , it is natural to ask for the graded 
extension of this map. The following proposition, which is evident, answers this 
question. 

Proposition 26. There exists a unique homomorphism of graded commutative 
algebras 

r, : A*(M)+ca*(M), 

such that jbrfE C” (M) 
( 1) r,(f) =A 
(2) re(df) =&f=X/. 0 

In particular, forfo,fi, . . . . j&COD(M), we have 

f’eU&!! A ... /,dfk)=fOXfi A-AX,, . 

The main properties of this extended hamiltonian map are the following: 

Proposition 27. 
( 1) r,ed=d&‘, i.e., the extended hamiltonian map is a cochain map of the 

de Rham complex {A*(M), d) into theHamilton complex {B*(M), de}. 
(2) Foreveryo, WA*(M), 

r,( ib, de) = m0, red , 

i.e., r, is a homomorphism of graded Lie algebras. 
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Proof: 
( 1) It is well known and results directly from (4b) that 

[e, v/dvJJ=p, vpv+(-1)vA[e, W] 

for every V, WE 9,,(M). In other words, we have 

d&VA W)=&VAW+(-I)~VA~~W. (28) 

This shows de to be a differentiation of the graded commutative algebra Q,,(M) 
as well as d with respect to /i*(M). So, the mappings read and dare coincide iff 
they coincide on C”(M). But this is exactly property 2 off, given in proposition 
26. 

(2) As before, it is well known, and results directly from (4a) and (4b), that 

[VAW,Z]=VA[W,Z]+(-l)wZIV,Z]~W, 

[v, wAz]=[v, w]Az+(-pwA[v,z]. 

These properties of the Schouten-Nijenhuis bracket and the similar properties of 
the bracket [ *, * ne leave the problem to be checked for differential forms w, Q of 
degree < 1 only. But in this case the result follows from proposition 2 1 and from 
the evident equalities 

mn=o, ~f;~,n=--x,~f~=cI;d, 
~eCl[d~dgD.)=~e(dcJ;g})=decf;gl 

=X,,=~X,,,x,D=[cdeJ;degll, 
wherej; g&“(M). :lJ 

Corollary 28. The hamiltonian map r, induces the homomorphism of the cohom- 
ology algebras 

r*, : H*(M)-*H*,(M), 

where Hz(M) = Ii>0 H&(M) denotes cohomologies of the hamiltonian complex 
GUM), de). 0 

5. The Poisson “integral” of the Schouten-Nijenhuis bracket 

Let AI&M) =d& 9*(M) ) be the space of multi-vector fields on M which are 
exact with respect to 8. Then n,(M) = 9*(M) /A?@(M) is the space of multi- 
vector fields on M which are all co-exact with respect to 8. As before, we define 
the map de as 
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where [ V] = I’( mod &(M) ). Now, the diagram 

A*(M) 2+ 9*(M) 

(29) 

appeals to be completed with a graded Lie algebra structure on n,(M) and a 
graded Lie algebra homomorphism ye which makes it commutative. 

We copy formula (27) to define the desired bracket, say, {a, A}~ on &(M): 

W’l, Wlb=W&WI mod~dM), (30) 
where V, WEB*(M). 

Lemma 29. Definition ( 30) is correct. 

Root The Jacobi identity of the Schouten-Nijenhuis bracket applied to 8, V, 
WE g*(M) can be rewritten in the form 

d,[v, W]=[dJ, w~+(-l)V([v,d&q. (31) 
In particular, for W=d&Z we have 

&[WeZl=U&K&Zll - (32) 
Now, it is seen from (32) that [ V, deWI E~&M) if either V or W belongs to 
g6dw. 0 

Because of this lemma we can write {V, w), instead of { [ V], [ IV]}.. Also, 
below we will make use of the abbreviation V- Winstead of V= Wmod 5%(M). 

Proposition 30. The bracket {a, a}@ supplies IT,(M) with a graded Lie algebra 
structure, i.e., for every V, W, ZE g*(M) we have: 

(1) {K we=-(-wYw~ v)*> 

(2) (-l)“z{v,{w,z}e}e+(-l)wv{w~~z, Veb 

+ (- 1 >““{Z {K v&=0. 

Proof 
( 1) We get the result by applying definition (30) to formula (3 1) rewritten in 

the form 
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(2 ) The proof is deduced from the Jacobi identity for the Schouten-Nijenhuis 
bracket applied to multi-vector fields V, dew and d&Z 

(-l)“=[K [&W&Z] ]+(-lF’[dJY, [d&T V] ] 

+(-l)““‘[d&, [V,dJV] ]=O. 

It remains to rewrite the terms of this equality in the following way by making 
useof (31) and (32): 

This proposition presents the Schouten-Nijenhuis bracket as the differential of 
the bracket { ., .}@ and, vice versa, the latter as the integral of the Schouten- 
Nijenhuis bracket. 

Finally, we define the map 

where square brackets denote equivalence classes mod B(M) and mod ST&M), 
respectively. 

Proposition 31. ye is a homomorphism ofgraded Lie algebras, i.e., 

reu4~ M~=bkbA r&lb * 

ProoJ: The result follows from the definitions and from the properties of r, listed 
in proposition 27: 

rdk4, [el}=r,(Uo,de4~)(mod~e(M>) 

= I&W W&> I (mod SW) 1 

= ULw d&4 (mod %(W) 

=We~l, [~eel~8=be( [~I)> Yd [@I )>e. 
Collecting now the above results we get: 
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Theorem 32. Diagram (29 ) consists of graded Lie algebras and their homo- 
morphisms and is commutative. cl 

This work was performed in the framework of the programme “Geometria e 
fisica” supported by Minister0 dell’Universit8 e della Ricerca Scientifica e Tec- 
nologica (local and national funds). This paper has been completed during the 
visit of Prof. A.M. Vinogradov at Dipartimento di Matematica Applicata “G. 
Sansone”, Universita di Firenze (supported by GNFM and GNSAGA of CNR) . 

Note added in proof 

An alternative natural way to extend “hamiltonian” concepts to 9 (M) comes 
out by discarding the dogma that generalized hamiltonian fields should be gen- 
eralized vector fields as well, say, elements of N(M). Namely, let I., . I denote 
the unified bracket on N(M) (see section 0 or ref. [ 111). Define the hamiltonian 
operator (“field”) YA corresponding to A= [ 01 E 9 (M) to be 

Y,=l;l,@~=[w,81] modIm LEP(M)+N(M). 

The formula YIA,,) = 1 Y,, Y, 1 shows that Ham @= {Y, I 2~ 9 (M)} is a graded Lie 
subalgebra of 9 (M) Olv( M) c X(M) . Next, we define analogs of canonical fields 
as operators do 9(M) @N(M) such that Id, 81 =O. They form another graded 
Lie subalgebra of 9 (M) OiV( M) denoted by Can 8. Then Ham 8 is an ideal of 
Can 8. All these facts result directly from the Jacobi identity for the bracket I ., * I. 
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